3.1063 \(\int \frac{a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=180 \[ -\frac{2 b (b B-2 a C) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}+\frac{2 (b B-2 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 C \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

[Out]

(2*(b*B - 2*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/((a^2 - b^2)*d*Sqrt[(a + b*Co
s[c + d*x])/(a + b)]) + (2*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt
[a + b*Cos[c + d*x]]) - (2*b*(b*B - 2*a*C)*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.289058, antiderivative size = 180, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 50, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.14, Rules used = {24, 2754, 2752, 2663, 2661, 2655, 2653} \[ -\frac{2 b (b B-2 a C) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}+\frac{2 (b B-2 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 C \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*b*B - a^2*C + b^2*B*Cos[c + d*x] + b^2*C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(b*B - 2*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/((a^2 - b^2)*d*Sqrt[(a + b*Co
s[c + d*x])/(a + b)]) + (2*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt
[a + b*Cos[c + d*x]]) - (2*b*(b*B - 2*a*C)*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])

Rule 24

Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Dist[1/b^2, Int[u*(a + b*
v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &&
 LeQ[m, -1]

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{a b B-a^2 C+b^2 B \cos (c+d x)+b^2 C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=\frac{\int \frac{b^2 (b B-a C)+b^3 C \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{b^2}\\ &=-\frac{2 b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}-\frac{2 \int \frac{-\frac{1}{2} b^2 \left (a b B-a^2 C-b^2 C\right )-\frac{1}{2} b^3 (b B-2 a C) \cos (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=-\frac{2 b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+C \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx+\frac{(b B-2 a C) \int \sqrt{a+b \cos (c+d x)} \, dx}{a^2-b^2}\\ &=-\frac{2 b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{\left ((b B-2 a C) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{\left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left (C \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{\sqrt{a+b \cos (c+d x)}}\\ &=\frac{2 (b B-2 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\left (a^2-b^2\right ) d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 C \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}-\frac{2 b (b B-2 a C) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.593566, size = 150, normalized size = 0.83 \[ \frac{2 \left (C \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+b (2 a C-b B) \sin (c+d x)-(a+b) (2 a C-b B) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )\right )}{d (a-b) (a+b) \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*b*B - a^2*C + b^2*B*Cos[c + d*x] + b^2*C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(-((a + b)*(-(b*B) + 2*a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)]) + (a^
2 - b^2)*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + b*(-(b*B) + 2*a*C)*Sin[c
 + d*x]))/((a - b)*(a + b)*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 2.326, size = 422, normalized size = 2.3 \begin{align*} -{\frac{1}{d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b-a+b \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\,{\frac{C\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{\sqrt{-2\,b \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}\sqrt{{\frac{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a-b}{a-b}}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{-2\,{\frac{b}{a-b}}} \right ) }+2\,{\frac{ \left ( bB-2\,aC \right ) \sqrt{-2\,b \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \left ( -2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) \left ({a}^{2}-{b}^{2} \right ) } \left ( \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{-2\,{\frac{b}{a-b}}} \right ) a-\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\,{\frac{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b}{a-b}}+{\frac{a+b}{a-b}}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{-2\,{\frac{b}{a-b}}} \right ) b+2\,b\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) } \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*b*B-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d
*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),(-2*b/(a-b))^(1/2))+2*(B*b-2*C*a)/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)/(a^2-b^2)*(
-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*
d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b+2*b*c
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C b^{2} \cos \left (d x + c\right )^{2} + B b^{2} \cos \left (d x + c\right ) - C a^{2} + B a b}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*b^2*cos(d*x + c)^2 + B*b^2*cos(d*x + c) - C*a^2 + B*a*b)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C b \cos \left (d x + c\right ) - C a + B b\right )} \sqrt{b \cos \left (d x + c\right ) + a}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c) - C*a + B*b)*sqrt(b*cos(d*x + c) + a)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^
2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a**2*C+b**2*B*cos(d*x+c)+b**2*C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C b^{2} \cos \left (d x + c\right )^{2} + B b^{2} \cos \left (d x + c\right ) - C a^{2} + B a b}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*cos(d*x+c)+b^2*C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*b^2*cos(d*x + c)^2 + B*b^2*cos(d*x + c) - C*a^2 + B*a*b)/(b*cos(d*x + c) + a)^(5/2), x)